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Coulomb Blockade Oscillations in the Thermopower of Open Quantum Dots
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We consider Coulomb blockade oscillations of thermoelectric coefficients of a single electron transistor
based on a quantum dot strongly coupled to one of the leads. An analytic expression for the thermopower
as a function of temperature T and the reflection amplitude r in the quantum point contact is obtained.
Two regimes can be identified: T ø ECjrj2 and T ¿ ECjrj2, where EC is the charging energy of the
dot. The former regime is characterized by a weak logarithmic dependence of the thermopower on the re-
flection coefficient, in the latter the thermopower is linear in the reflection coefficient jrj2 but depends on
temperature only logarithmically.

DOI: 10.1103/PhysRevLett.86.280 PACS numbers: 73.23.Hk, 73.50.Lw
Thermoelectric effects in mesoscopic devices have been
the subject of extensive experimental and theoretical re-
search [1–7]. Many recent studies focused on the ther-
moelectric properties of quantum dots in the Coulomb
blockade (CB) regime [3–7]. Most of them concentrated
on the CB oscillations of the thermopower, S � 2

DV
DT ,

where DT is the temperature difference across the dot, and
DV is the voltage necessary to nullify the current.

The theory of the CB oscillations in the thermopower
of quantum dots in the weak tunneling regime was con-
structed in Ref. [3]. This theory takes into account only
the lowest order tunneling processes, i.e., the sequential
tunneling, and neglects the cotunneling processes. Its re-
sults were in agreement with the experiments of Ref. [4].
Later [5] it became possible to experimentally access the
regime of lower temperatures and stronger tunneling where
the cotunneling processes become dominant. The theo-
retical description of this regime was recently given in
Ref. [6].

In a very interesting recent experiment [7] the CB oscil-
lations in the thermopower of a nearly open quantum dot
were studied as a function of the reflection coefficient jrj2

in the contact. The setup of these experiments is schemat-
ically represented in Fig. 1. Surprisingly, an initial de-
crease in the amplitude of CB oscillations of thermopower
with decreasing jrj2 was followed by a plateau with nearly
jrj-independent CB oscillations of thermopower. This
saturation was attributed [7] to the effects of elastic co-
tunneling [8].

The theory of thermopower for the weak tunneling
regime developed in Refs. [3,6] does not apply to this case.
The previous studies of nearly open quantum dots were
devoted to their thermodynamic and transport properties
[9–11]. A special feature of the thermoelectric power S
is that it is sensitive to the average energy transported by
electrons, which in the tunneling approximation depends
on the odd-in-energy part of the density of states (DOS)
in the dot. Thus the thermoelectric phenomena represent
an independent probe of these systems.
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In this Letter we present a theory of thermoelectric ef-
fects in a quantum dot in the nearly open regime. We
consider a quantum dot which is coupled by a tunneling
junction to the left lead and by a single channel quantum
point contact (QPC) to the right lead (see Fig. 1). The
reflection amplitude in the QPC is assumed to be small,
jrj ø 1. The mean level spacing d in the dot is assumed
to be vanishingly small. This is a good assumption since
experimentally [7] d ø T .

We find the thermoelectric coefficient GT of the device
in Fig. 1 describing the current response I at zero bias,
DV � 0, to the difference of the temperatures DT between
the two leads: GT � lim I

DT jDV�0,DT!0. Our main result
is the following expression for GT of the dot:

GT �
GLjrj2T
6peEC

ln
EC

T 1 G
sin�2pN�

3
Z 1`

2`

x2�x2 1 p2�
�x2 1 �G�T �2� cosh2�x�2�

dx . (1)

Here GL ø e2�h is the conductance of the left contact,
e is the absolute value of the electron charge, and EC is
the charging energy. We have also introduced the energy
scale G � �8g�p2�ECjrj2 cos2�pN�, which depends on
the gate voltage N ; here lng � C � 0.5772 . . . is the Eu-
ler constant. The result (1) was obtained with logarithmic
accuracy assuming that EC ¿ T , G.

The thermopower S � GT �G is then obtained from
Eq. (1) by using the result of Ref. [11] for the conductance
G of the device shown in Fig. 1, which we reproduce here
for completeness:

G �
GLG

8gEC

Z 1`

2`

x2 1 p2

�x2 1 �G�T �2� cosh2�x�2�
dx . (2)

For the two limiting cases, T ø G and T ¿ G, we
obtain simplified expressions for the thermopower,

S �

8<
:

64gjrj2

9p2e lnEC

T sin�2pN�, for T ¿ G ,
p3T
5eEC

lnEC

G tan�pN�, for T ø G .
(3)
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FIG. 1. Schematic drawing of a quantum dot electrostatically
defined on a surface of a two-dimensional electron gas. The
dot is connected to the left lead with temperature T 1 DT by
a tunneling junction and to the right lead at temperature T by a
single channel quantum point contact. The latter is characterized
by a reflection amplitude r in the contact and can be thought of
as arising from a point scatterer depicted by a cross. The value
of r is controlled by the voltage on gate R. The voltage on
the central gate G determines the optimal electron number N in
the dot.

It is difficult to make a direct comparison of the results
(1) and (3) with the experiments of Ref. [7]. The experi-
mental data contain only one curve, that for jrj2 � 0.18,
in the strong tunneling regime. The comparison is fur-
ther complicated by the error bars in the reflection coeffi-
cient, djrj2 � 0.1. In Fig. 2 we plot S�N� at T � 0.2EC ,
for three values jrj2 � 0.1, 0.2, and 0.3, which all fall
within the experimental error. Qualitatively, S�N� is nearly
sinusoidal for jrj2 � 0.1 and 0.2, and is similar to that ob-
served in Ref. [7] for jrj2 � 0.18 6 0.1.

Interestingly, even without taking into account the elas-
tic cotunneling effects [8], in the regime T ø G the ther-
mopower only weakly (logarithmically) depends on the
reflection coefficient. In the opposite regime, G ø T , the
thermopower is nearly independent of the temperature, but
scales linearly with the reflection coefficient jrj2 vanish-
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FIG. 2. Thermopower in units of 1�e of a quantum dot with
jrj2 � 0.1, 0.2, and 0.3 (dashed, solid, and dotted lines, respec-
tively). The dependences were calculated using Eqs. (1) and (2)
at T � 0.2EC .
ing, as expected, at perfect transmission. Note that even at
very low temperatures T ø EC jrj2, one still has T ¿ G

near half-integer values of the gate voltage N correspond-
ing to the CB peaks of conductance (2). The width dN
of those regions can be easily found from the condition
G�N� � T . Upon substitution into Eq. (3) it gives the es-
timate of the amplitude of the CB oscillations of the ther-
mopower S0 � e21jrj

p
T�EC ln�EC�T �.

It is noteworthy that in the low temperature regime T ø
G, when the conductance (2) shows [11] the temperature
dependence G ~ T2 characteristic of inelastic cotunneling
[12], the thermopower can be expressed in terms of the
logarithmic derivative of the conductance with respect to
the gate voltage 2ECN :

S �
p2T

10eEC
ln

µ
EC

G

∂
≠ lnG
≠N

. (4)

This form is analogous to the Cutler-Mott formula [13] for
the thermopower of a system of noninteracting electrons
in a metal, but with a different coefficient in front of the
logarithmic derivative. A similar relation holds in the case
of weak inelastic cotunneling [6]; however, the prefactor of
Eq. (4) contains an additional large factor ln�EC�G�. In the
opposite case of high temperature T ¿ G no expression
similar Eq. (4) applies.

Below we present the derivation of the result (1).
Following Ref. [11], the electron transport through the
right QPC can be described by a one-dimensional model
amenable to bosonization, whereas the left contact can be
treated in the tunneling approximation. The Hamiltonian
of the dot has the form Ĥ � Ĥ0 1 ĤR 1 ĤL 1 ĤC ,
where

Ĥ0 �
X
ka

eka
y
kaaka 1

X
pa

epay
paapa

1
yF

2p

X
a

Z
��=fa�x��2 1 p2P2

a�x�	 dx , (5a)

ĤL �
X
kpa

�yta
y
kaapaF 1 y�

t ay
paakaFy� , (5b)

ĤR �
D
p

jrj
X
a

cos�2fa�0�� , (5c)

ĤC � EC

∑
n̂ 1

1
p

X
a

fa�0� 2 N

∏2

. (5d)

The operators ĤR , ĤL, and ĤC describe the backscatter-
ing in the right QPC, tunneling through the left contact,
and the charging energy of the dot, respectively. In the
equations above a �", # is the spin label, apa and aka

are electron annihilation operators in the dot and the left
lead, respectively, D is the energy cutoff in the bosoniza-
tion, and fa is the bosonization displacement operator de-
scribing the electron transport through the right QPC with
Pa being its conjugate momentum, �fa�x�, Pa0�x0�� �
id�x 2 x0�da,a0 (we have put h̄ � 1). The modified form
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of the tunneling Hamiltonian in Eq. (5b) reflects the fact
that the electron tunneling event changes the electron num-
ber n̂ in the dot. This is achieved through the introduction
of the charge-lowering operator F [11] which satisfies the
commutation relation �F, n̂� � F. The current operator
through the left contact can be obtained from the equation
of motion for the charge operator Î � 2e �̂n � ie�n̂, Ĥ�.
Only ĤL contributes to this commutator and gives rise to
the following expression for the current operator:

Î � ie
X
kpa

�y�
t ay

paakaFy 2 yta
y
kaapaF� . (6)

We treat the problem in the lowest order in the tunnel-
ing Hamiltonian Eq. (5b). We also assume that the con-
ductance of the tunneling contact is much less than the
conductance quantum, GL ø e2�h. In this approximation
all of the temperature drop happens across the left contact.
We take the temperature of the left lead to be T 1 DT
and that of the dot and the right reservoir to be T . In the
linear approximation in DT the current I can be expressed
through the tunneling DOS n�e� in the dot as

GT �
I

DT
�

GL

4T2en0

Z `

2`

n�e�ede

cosh2� be

2 �
. (7)

Here n0 is the DOS in the dot in the absence of interaction,
Eq. (5d).

Thus, technically, the problem in the tunneling approxi-
mation reduces to the calculation of the energy-dependent
tunneling DOS, n�e�. We note that GT depends only on the
odd (in energy) component of DOS, whereas the conduc-
tance G depends only on the even component. Therefore,
as was mentioned earlier, thermopower measurements
represent an independent test of the theory of Coulomb
blockade in nearly open dots developed in Refs. [9–11].
Moreover, in the leading order in max�T , G	�EC the odd
component of the tunneling DOS vanishes [11]. The
thermoelectric coefficient GT is small in the ratio of
max�T , G	�EC in comparison to the conductance G. Its
calculation requires going beyond the previously adopted
approximations [11] and retaining subleading order in
e�EC in the tunneling DOS, n�e�.

The tunneling DOS in the dot can be expressed as

n�e� � 2
1
p

cosh
be

2

Z `

2`
G

µ
b

2
1 it

∂
exp�iet� dt ,

(8)

where G� b

2 1 it� is the Matsubara Green function,

G�t� � 2
X
pp0


Ttapa�t�F�t�ay
p0a�0�Fy�0�� , (9)

analytically continued to complex time t �
b

2 1 it. The
angle brackets 
· · ·� in Eq. (9) denote the thermal average.

Because the dynamics of the operators apa and F
are decoupled, the Green function in Eq. (9) factorizes
into G�t� � G0�t�K�t�, with G0�t� � n0pT�sin�pTt�
being the free electron Green function and K�t� �

TtF�t�Fy�0�� [11].
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Since the operator Fy�0� in K�t� changes the value of
n̂ from 0 to 1 at t � 0, and F�t� changes it back to 0 at
t � t, the correlator K�t� can be rewritten as

K�t� �
Z�t�
Z�0�

, (10)

where Z�t� is a functional integral over fa’s in the pres-
ence of the time-dependent charge nt�t� � u�t�u�t 2 t�.
Introducing the charge and spin mode variables in the
right contact fc,s�x� � �f"�x� 6 f#�x���

p
2, we can write

Z�t� as

Z�t� �
Z

D�fc, fs� exp�2SC�t� 2 S0,c 2 S0,s 2 SR� .

(11)

Here S0,c 1 S0,s represents the free electron part of the
action in the absence of backscattering in the QPC, SC

denotes its charging part, and SR represents the backscat-
tering in the QPC. These terms are given by

S0,i �
Z b

0
dt

Z
dx

yF

2p

µ
�=fi�2 1

�f2
i

y
2
F

∂
,

i � c, s , (12a)

SC�t� �
Z b

0
dt EC

∑
nt�t� 1

p
2

p
fc�0, t� 2 N

∏2

, (12b)

SR �
Z b

0
dt

2D
p

jrj cos�
p

2 fc�0, t��

3 cos�
p

2 fs�0, t�� . (12c)

At frequencies below EC the fluctuations of the charge
mode, fc�0, t� are suppressed by the charging energy term
(12b) and can be integrated out. Furthermore, we can
evaluate the functional integral over fc by the saddle point
approximation ignoring the backscattering term, Eq. (12c).

The action S sp�t� and the value of the charge mode
f

sp
c �0, t� at the saddle point are found to be

S sp�t� � S
sp
C �t� 1 S

sp
0,c � ln

2gEC sin�pTt�
p2T

,

(13a)
p

2 fsp
c �0, t� � p�N 2 nt�t�� 1 F �t� 1 F �t 2 t� ,

(13b)

F �t� �
X̀
n�1

sin�2pnTt�
n 1

EC

p2T

. (13c)

In Eq. (13a) we have assumed that t ¿ E21
C , which is a

good approximation since we only need t � b�2 1 it in
Eq. (8).

By averaging the backscattering term (12c) over the fluc-
tuations of fc, we obtain

S̃R,t �

s
8gECD

p3 jrj

3
Z b

0
dt cos�

p
2 fsp

c �0, t�� cos�
p

2 fs�0, t�� .
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Since the charge modes can only be intergated out at fre-
quencies below the charging energy, one has to assume that
the energy cutoff in the above action is D � EC .

Equation (11) can now be written as

Z�t� � N e2S sp�t�Zs�t� , (14a)

Zs�t� �
Z

D �fs� exp�2S0,s 2 S̃R,t� , (14b)

where N is the t-independent factor which arises from
the integration over the fluctuations about the saddle point
and drops out of K�t� in Eq. (10). The correlator K�t� in
Eq. (10) then factorizes into K�t� � KQ�t�KF�t�, where

KQ�t� � e2S sp�t� �
p2T

2gEC sin�pTt�
, (15)

and KF�t� is the spin part of the correlator which can be
expressed as

KF�t� � Zs�t��Zs�0� . (16)

The effective action in Eq. (14b) can be refermionized
following Refs. [10,11]. The Hamiltonian in this represen-
tation has the form

Ĥ � iyF

Z
cy�x�=c�x� dx 1 l�t�h�c�0� 2 cy�0�� ,

(17a)

l�t� �
2
p

p
gyFEC jrj cos�

p
2 fsp

c �t�� , (17b)

where h � �c 1 cy� is a Majorana fermion.
In the limit T�EC ! 0 the functions F �t� in Eqs. (13b)

and (13c) tend to zero and, to leading order in T�EC ,
can be neglected [11]. Then the time-dependent
coefficient l�t� in Eqs. (17a) and (17b) becomes l0�t� �
2
p

p
gyFEC jrj �21�nt�t� cos�pN�. In this approximation

[11] the odd-in-energy component of the tunneling DOS
in the dot vanishes, thus nullifying the thermopower.
Therefore we expand KF�t� in Eq. (16) to first order
in dl�t� � l�t� 2 l0�t�. In the fermion representation
(17a) and (17b) we obtain, for the linear in the dl�t�
correction to KF�t�,

DKF�t� �
Z b

0
�21�nt�t�dl�t�F�t, t� dt , (18a)

F�t, t� � 
Tth�t�h�0�h�t� �c�0, t� 2 cy�0, t��� , (18b)

where 
· · ·� denotes the thermal average with the Hamilton-
ian [Eqs. (17a) and (17b)] with l �

2
p

p
gyFEC jrj 3

cos�pN� independent of time t.
The average in Eq. (18b) can be evaluated with the aid

of the Wick theorem. It is not difficult to show that the
thermopower is an odd function of N . We therefore need
only to retain the odd in the N component DoddKF�t� of
Eq. (18a). By evaluating the integral in Eq. (18a) with
logarithmic accuracy in EC�max�T , G	 we find
DoddKF�t� � 2
8

EC

s
gGEC

p
jrj sin�pN� ln

EC

T 1 G

3
Z jdj

j2 1 G2

ejjtj

ebj 1 1
. (19)

The upper energy scale EC in the logarithmic factor origi-
nates from the above-mentioned energy cutoff D � EC

of the spin excitations. Using Eq. (19) we obtain our main
result, Eq. (1).

In conclusion, we have presented a theory of the
Coulomb blockade oscillations of the thermoelectric
coefficient GT and the thermopower S of quantum dots
in the anisotropic nearly open regime in the limit where
the single particle mean level spacing is negligible. Two
distinct regimes can be identified: the one with G ¿ T ,
and the one with G ø T . In the former the thermopower
is linear in temperature but is nearly independent of the
reflection coefficient in the QPC and can be expressed in
the form of Eq. (4) analogous to the Cutler-Mott formula
[13]. In the latter, the thermopower is linear in the
reflection coefficient jrj2 but depends on the temperature
only logarithmically.
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